Performance based engineering for buildings

Is the glass half empty or half full?

Craig D. Comartin, S.E.

Current design and construction landscape

- Global earthquake fatalities continue to mount.
- A major urban earthquake in US is the next Katrina.
- Green Movement is a major force and seismic sustainability is not a significant part of it.
- PBE is perceived as "conservative" and costly.
- Engineers are widely viewed as a commodity.
- Designers and regulators want prescriptions.

Global seismic mortality

Year

Chances of Dying if a Major Earthquake Occurs

San Francisco

1 in 1000

Istanbul

1 in 50

EERI and IAEE World Housing Encyclopedia (WHE)

a web-based encyclopedia and global network of engineers, architects and housing experts

Algeria

Armenia

Colombia

India

CDComartin,Inc

Turkey

Philippines

Mexico

CDComartin,Inc

Japan

U.S.A.

World Housing Encyclopedia

EARTHQUAKE-RESISTANT CONFINED MASONRY CONSTRUCTION

CDComartin,Inc

Confined masonry

Concrete Coalition

Earthquake Engineering Research Institute (EERI)

Pacific Earthquake Engineering Research Center (PEER)

Applied Technology Council (ATC)

How many killers are there?

"50% of the casualties are coming from 5% of the buildings."

Kircher et al., 2006

The Challenge of "Reality"

- These buildings do not exist in a seismic vacuum.
- What are the economic and social implications?
- How can we develop community retrofit programs the represent the interests of all stakeholders?

Soft stories in concrete frames

Collapse modes

Vertical load collapse

Vertical load collapse

Collapse modes

Lateral dynamic instability (incipient collapse)

Lateral dynamic instability

Hazard curve

Supplemental vertical support

Eshleman Hall

First floor column jackets

Katrina loses

Fatalities

Damage

1,836 confirmed, 705 missing

\$81.2 billion

Consequences of earthquakes for the US

<u>Event</u>		<u>Deaths</u>	Economic Loss
Previous	1989 L Pri	62	\$10 billion
	1994 No	57	\$20 billion
	1995 Kobe Japan	>5,500	\$250 billion

Consequences of earthquakes for the US

<u>Event</u>		<u>Deaths</u>	Economic Loss
<u>Previous</u>	1989 L Pri	62	\$10 billion
	1994 Nov	57	\$20 billion
	1995 Kobe Japan	>5,500	\$250 billion
Projected	Hayward Fault Scenario (M7)	>4,000	\$100 billion
	Seattle Fault Scenario (M6.7)	>1,600	\$33 billion
	Repeat of 1906 San Francisco	3,000 – 8,000	\$200 billion
	Scenario Newport-Inglewood Fault (M7)	2,000 – 6,000	\$200 billion

Seismic risk and sustainability

Building

Future extreme event (e.g. earthquake)

What can happen?

Pacific Earthquake Engineering Research Center

PEER framing equation

Decision variable

· risk of losses

$$v(DV) = \iiint G\langle DV | DM \rangle | dG\langle DM | EDP \rangle | dG\langle EDP | IM \rangle | d\lambda(IM)$$

Damage measure

- casualties
- capital loss
- downtime

Engineering demand parameter

- displacement
- drift
- etc

Intensity measure

- hazard curve
- level of shaking

Risk of losses

Deaggregation of loss

Stanley Hall-UC Berkeley

• <u>Item</u>	• Cost
• Capital	• \$160 million
• Contents	• \$50 million
Business Interruption	 \$40 million annually

Costs

Present value of losses

Benefit-cost ratio (5% Discount, 50 year life)

Equivalent to ~11% ROI

Key opportunities for performance based engineering and PEER

- 1. Provide realistic procedures to address life safety globally.
- 2. Characterize seismic sustainability in terms and procedures that are directly useful.
- 3. Become a central source for fragility information.
- 4. Develop complete packages ready for application.
- 5. Maintain and strengthen multi-discipline culture.
- 6. Set your own course.

Past and current models

- ASCE 41 Supplement
- Tall Buildings Initiative
- Concrete Coalition/Grand Challenge
- Confined Masonry Guidelines
- Soil-structure interaction

